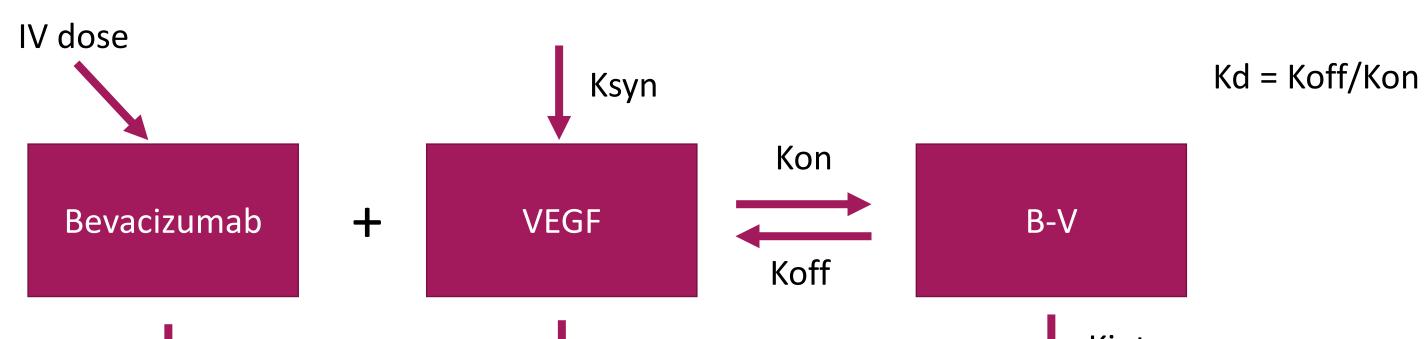
Translational PK of bevacizumab between monkey and human using PBPK modeling Blaise Pasquiers^{1,2}, Salih Benamara¹, Mathieu Felices¹, Alicja Puszkiel², David Ternant³, Xavier Declèves²


1 - PhinC Development, Massy, France 2 - UMR-S 1144 – Université Paris Cité, Paris, France 3 - Service de pharmacologie médicale, CHU de Tours, France

Correspondence : blaise.pasquiers@phinc.fr

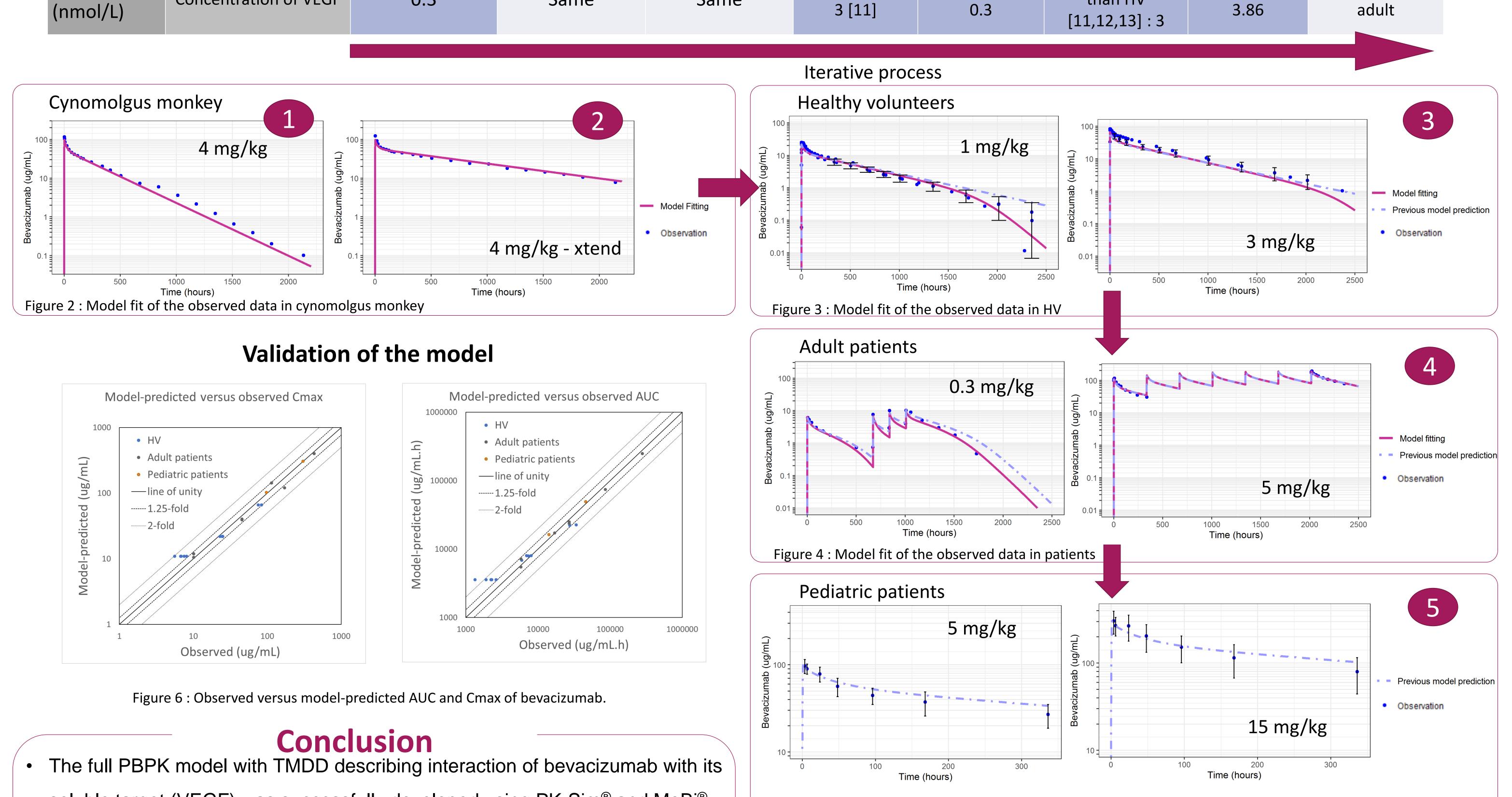
Introduction

Development

- PBPK modeling is increasingly used in Model Informed Drug Development (MIDD) of small molecules but its application to development of monoclonal antibodies (mAbs) is recent
- The objective of this study was to develop a translational mAbs PBPK modeling approach based on bevacizumab data from the literature to better support use of MIDD in mAbs development

Methods

Université


A full PBPK model for mAbs was developed using digitalized PK data of bevacizumab and Xtend-bevacizumab (bevacizumab with higher FcRn affinity) [1,2,3,4,5,6,7,8,9,10] in PK-Sim[®] and MoBi[®] (OSPS) software.

The model includes the target-mediated drug disposition (TMDD) phenomenon due to the interaction of bevacizumab with its target (VEGF). The model was built based

on monkey data and refined at each step of a theoretical drug development :

- 1 Model building in cynomolgus monkey (bevacizumab)
- 2 Validation (a) and refinement (b) in cynomolgus with Xtend-bevacizumab
- 3 Prediction of HV PK (a), then refinement with the data (b)
- 4 Prediction of adult cancer patients PK (a), then refinement with the data (b)
- 5 Prediction of PK in pediatric patients

CL	. Kdeg		Kint At each step, the model-predicted AUC and Cmax were compared with the observ							
	Figure 1 : TMDD model for in	teraction of bevacizumab	with its target VEGF	val	lues.					
Cyne		omolgus data	Cynomo	Cynomolgus data (xtend)		HV data		Adult patients data		
		\checkmark	\checkmark		Ļ		Ļ		4	
Parameters	Description of parameters	(1) Cynomolgus Model fitting	Xtendbeva	(2b) Cynomolgus Xtendbeva Model fitting	(3a) Human HV Model Prediction	(3b) Human HV Model fitting	(4a) Human patients Model Prediction	(4b) Human patients Model fitting	(5) Pediatric Model Prediction	
Kd-FcRn (nmol/L)	Equilibrium dissociation constant of bevacizumab to FcRr	Fitted value : 0.45	11-fold lower than bevacizumab [10] : 0.041		2-fold higher than monkey [15] : 0.9	Fitted value : 0.94	Same	Same	Same	
Kdeg (1/min)	Degradation rate constant of VEGF (1 st order)		No TMDD				Same	Same	Same value as adult	
Kint (1/min)	Internalization rate constant of B-V (1 st order)		No TMDD				Same	Same	Same	
Kd-target (nmol/L)	Equilibrium dissociation constant of bevacizumab to VEG	physiological value	Same	Same	Same	Same	Same	Same	Same	
<pre>Koff-target (1/s)</pre>	Constant of dissociation rate of B-V (1 st order)		No TMDD				Same	Same	Same	
Conc VEGF	Concentration of VEG	F 0.3	Same	Same	Between 0 and	Fitted value :	10-fold higher than HV	Fitted value :	Same value as	

soluble target (VEGF) was successfully developed using PK-Sim[®] and MoBi[®]

- The model was satisfactorily applied for inter-species (from monkey to human) and inter-molecules (from bevacizumab to Xtend-bevacizumab) PK translation.
- All model-predicted AUC and Cmax were within 2-fold of the observed values.
- \rightarrow This work is a first step to generalize the use of full PBPK models for mAbs PK

translation and optimization.

Figure 5 : Model fit of the observed data in pediatric patients

References

1.Demarchi, M. et al.. PLoS ONE (2021). **2**.Gordon, M. S. et al. J Clin Oncol (2001). **3**.Hettema, W. et al. Expert Opinion on Investigational Drugs (2017). 4. Hummel, M. et al. J Cancer Res Clin Oncol (2022). 5. Romera, A. et al. Lancet Gastroenterol Hepatol (2018). 6.Shin, D. et al. Cancer Chemother Pharmacol (2020). 7.Sinn, A., et al. Brit J Clinical Pharma (2022). 8.Wu, X. et al. BioDrugs (2019). 9.Bender, J. L. G. et al. JCO (2008). 10.Zalevsky, J. et al. Nat Biotechnol (2010). 11. Stefanini, et al. BMC Syst. Biol. (2008). 12. Stefanini, et al. Cancer Res. (2010). 13. Kut, C, et al. Br. J. Cancer (2007). 14. Papadopoulos, N. et al.. Angiogenesis (2012). 15. Neuber, T. et al. mAbs (2014). 16. Basu, S. et al. Front. Pharmacol (2020).