

A PBPK model-based drug interaction study to inform the dose selection of a new compound

Jeremy Perrier, Benjamin A.C. Dupont, Virginie Gualano PhInC Development, Massy (France) jeremy.perrier@phinc.fr – Journées du GMP 2019 16 – 18 octobre Lyon, France

Background

Drug A is a molecule metabolized mainly by cytochrome P450 2D6 (CYP2D6) and in a lesser extent by CYP3A4. It is administered orally either as 20 mg or 40 mg dose and is currently developed to be co-administered with Drug B as a modulator.

Drug B is a molecule essentially metabolized by CYP1A2 and CYP2D6 and is a moderate inhibitor of CYP2D6.

A PBPK approach was employed to study the influence of drug B on the exposure of drug A to determine an optimal dosing for the combo drug.

The aim of the study was to determine an optimal dosing for the combo drug A+B thus the different objectives were as follow:

Objectives

- Develop a PBPK model for both drugs (A and B)
- \succ Validate drug B as a perpetrator on a CYP2D6 substrate (desipramine) (1)
- \succ Develop a model for paroxetine to validate drug A as a CYP2D6 substrate (2)

and verify the contribution of CYP2D6 in the metabolism of Drug B (3)

 \succ Perform model-based DDI predictions of drug B on drug A (4)

PBPK models development steps

PBPK analysis Results

(B) With DDI

96

(1) Validation of drug B as a CYP2D6 perpetrator on desipramine (2) Validation of Drug A as a CYP2D6 substrate with paroxetine **3** Verification of CYP2D6 contribution on drug B with paroxetine

Figure 2. Mean **s**imulated (solid lines, N= 50 subjects) and observed ⁽²⁾ (open symbols ±SD) Cp-time profiles of desipramine after an oral administration of 50 mg without (A) or with (B) pre-treatment with drug B 60 mg for 7 days. Dotted lines represent the 5th and 95th percentiles

Ratios of simulated versus observed of the DDI studies

		Cmax Ratio Sim / Obs	AUC 0-t Ratio Sim / Obs	
1	Desipramine 50 mg without	0.97	1.02	mL)
	Desipramine 50 mg with drug B 60 mg	0.91	1.00	tion (ng/1
	Drug A 20 mg			l ntra

Figure 3. Mean simulated (solid lines, N= 50 subjects) and observed ⁽³⁾ (open symbols ±SD) Cp-time profiles of drug A after an oral administration of 20 mg without (A) or with (B) pre-treatment with paroxetine 20 mg for 6 days. Dotted lines represent the 5th and 95th percentiles

Predictions of the DDI effect of drug B on drug A 4

different dose levels

Figure 4. Mean simulated (solid lines, N= 50 subjects) and observed ⁽²⁾ (open symbols ±SD) Cp-time profiles of drug B after an oral administration of 40 mg without (A) or with (B) pretreatment with paroxetine 20 mg for 20 days. Dotted lines represent the 5th and 95th percentiles

- ✓ The model-based DDI simulations accurately described the observations with all ratios (Sim/Obs) contained in the 2-fold error range (table 1)
- \checkmark The results of the predictions suggested that the administration of drug A (20 or 40 mg) would result in a 1.5-fold increase of the AUC when administered with

60 mg of drug B

- ✓ The administration of drug A 40 mg with drug B 60 mg should be taken with caution
- \checkmark These results were satisfying and instructive enough to make a decision

Conclusion

References

The PBPK models successfully developed were able to contribute to the dose

selection. Therefore the PBPK modelling approach could be used as a valuable tool in

the drug development and help in the decision making.

Modelling and simulations performed with GastroPlus version 9.6

- (1) Samant et al. 2017 development and qualification of physiologically based pharmacokinetic models for drugs with atypical distribution behaviour: a desipramine case study
- (2) Skinner et al. 2003 duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers
- Clinical study data provided by the sponsor (3)