

Jeremy Perrier*, Virginie Gualano

PBPK model

validation

PhinC Development, Massy (France)

jeremy.perrier@phinc.fr – Journées du GMP 2021 20 – 22 Octobre Paris, France

Developing a mechanistic in vitro-in vivo relationship (IVIVR) for drug A using Physiologically-based pharmacokinetic modeling

Results

1 - PBPK absorption model

Simulated versus observed Cmax observed (ng/mL) Simulated versus observed AUC observed (ng.h/mL)

Figure 2. Simulated (line) and observed (symbols) plasma concentration-time profiles after single oral administrations fasted

Figure 3. Comparison of simulated versus observed PK parameters

2 - Deconvolution and direct correlation (gastro-resistant modified release – GR/MR)

- ☐ *In vitro*, GR/MR tablets exhibit zero release for 2 h (gastric resistance) then a release rate of approximately 10 to 13 h, based on the time to reach 80% of dissolution (T80)
- ☐ A successful IVIVR was found for each dissolution profile
- ☐ The results showed that the *in vivo* release was slower than the *in vitro* release
- ☐ The simulated PK profiles matched correctly the observations
- ☐ Percent prediction errors (%PE) for C_{max} and AUC were all below 10%
- ☐ To capture the prolonged absorption of the GR/MR formulation, the transit time in the default gut physiology model increased from 13.5 to 40.0 h for colon [1]
- simulated gastro-intestinal confirmed the absorbed and colon absorption of the modified release formulations compared to the immediate release formulations

parameter		GR/MR 16 mg	GR/MR 32 mg	GR/MR 64 mg	Absolute average
Cmax (ng/mL)	observed	8.8	13.6	23.7	
	simulated	9.1	14.2	24.3	
	%PE	4	4	3	3.5
AUCinf (ng.h/mL)	observed	113.8	233.7	514.9	
	simulated	117.2	228.3	503.9	
	%PE	3	-2	-2	0.5
Tmax (h)	observed	3.00	3.50	3.50	
	simulated	3.20	3.68	3.40	
	difference	0.2	0.2	-0.1	0.1

Table 1. Prediction errors for the PK parameters C_{max} and AUC

Figure 7. PBPK model simulated gastro-intestinal tract (GIT) regional absorption

Background

- ☐ Drug A is a small molecule with good solubility and permeability (BCS class I)
- ☐ The molecule is extensively metabolized and eliminated in urine and feces
- □ IVIVR can be a useful tool to get relevant insight into *in vivo* dissolution and absorption

- ☐ 1. To develop a PBPK absorption model for drug A to describe oral absorption in healthy subjects based on data with immediate release (IR), sustained release (SR) and modified release (MR) formulations
- develop a mechanistic *in vitro-in vivo* relationship for the specific

Objectives

gastro-resistant modified release (GR/MR) oral formulation

Conclusions

- ✓ A PBPK absorption model was successfully developed and validated (within 2-folds).
- ✓ Predictability of the IVIVR was evaluated and %PE were below 10%
- ✓ The results confirmed the ability of the IVIVCPlus[™] module to adequately characterize the specific MR formulations (GR/MR) and to be further used to develop an IVIVC

Materials & Methods

- ☐ GastroPlus version 9.7 was used to develop a PBPK absorption model
- ☐ Dissolution and absorption after oral dosing were predicted using the advanced compartmental absorption and transit model (ACAT)
- ☐ IVIVCPlus[™] module was used to develop the IVIVR
- ☐ Mechanistic deconvolution one step procedure (Correlate Directly) was used in IVIVCPlus™ module
- ☐ The fitting optimization method set as unity with the concentration-time profile as observation weight
- ☐ Predictability of the IVIVR was evaluated according to the regulatory guidance by calculating the percent prediction errors (%PE) [2]

References

- ✓ [1] Bouchacha et al. 2012 Colonic response to food in constipation, *Int. J.* Colorectal Dis., vol. 21, no. 8, pp. 826-833, 2006
- √ [2] FDA Guidance for Industry: Extended Release Oral Dosage Forms: Development, Evaluation and Application of In vitro/In Vivo Correlations. 1997